Calibers of Compact Spaces
نویسندگان
چکیده
منابع مشابه
Generic left-separated spaces and calibers
In this paper we use a natural forcing to construct a left-separated topology on an arbitrary cardinal κ. The resulting left-separated space Xκ is also 0-dimensional T2, hereditarily Lindelöf, and countably tight. Moreover if κ is regular then d(Xκ) = κ, hence κ is not a caliber of Xκ, while all other uncountable regular cardinals are. This implies that some results of [A] and [JSz] are, consis...
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملSpaces of Compact Operators
In this paper we study the structure of the Banach space K(E, F) of all compact linear operators between two Banach spaces E and F. We study three distinct problems: weak compactness in K(E, F), subspaces isomorphic to l~ and complementation of K(E, F) in L(E, F), the space of bounded linear operators. In § 2 we derive a simple characterization of the weakly compact subsets of K(E, F) using a c...
متن کاملFuzzifying Strongly Compact Spaces and Fuzzifying Locally Strongly Compact Spaces
In this paper, some characterizations of fuzzifying strong compactness are given, including characterizations in terms of nets and pre -subbases. Several characterizations of locally strong compactness in the framework of fuzzifying topology are introduced and the mapping theorems are obtained.
متن کاملOn function spaces of Corson-compact spaces
We apply elementary substructures to characterize the space Cp(X) for Corsoncompact spaces. As a result, we prove that a compact space X is Corson-compact, if Cp(X) can be represented as a continuous image of a closed subspace of (Lτ ) × Z, where Z is compact and Lτ denotes the canonical Lindelöf space of cardinality τ with one non-isolated point. This answers a question of Archangelskij [2].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1982
ISSN: 0002-9947
DOI: 10.2307/1999765